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DEFINITION OF SYMBOLS

System constant (k/47r 2)

System efficiency (efficiency factor)

Modulus of rigidity of the torsion rod

Mass moment of inertia of the object

Mass moment of inertia of the attached object about its

c.g.

Polar moment of inertia of the torsion rod's cross-

sectional area

Length of the torsion rod

Mass of the attached object

Total number of cycles used in the "Test Run"*

Number of energy twists in the test run

Torque or applied moment

Radius of the disk

Radius of the torsion rod

Tangential force at the periphery of the disk

Height (or thickness) of the disk

Torsion rod constant (torque stiffness)

*The "Test Run" is that predetermined portion of the curve within

the intercepts of the chord line.
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DEFINITION OF SYMBOLS (Cont 'd)

Density of the material

Radius of the elemental ring

Time of one oscillation

Angular frequency (ZTr/t)

Angle about rotational axis of the torsion rod

Amplitude (in radians) at beginning of test run

Angular velocity

The resulting angular acceleration (response)

Mid-amplitude (point of tangency)

Amplitude (in radians) at end of test run

3. 1415926535
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TECHNICAL NOTE D- 1114

DETERMINING INERTIAS BY USING THE AMPLITUDE

DECAY RATE OF A MECHANICAL OSCILLATING SYSTEM

By Gene T. Carpenter and Dan T. Meredith

SUMMARY

A series of tests and experiments have been performed to develop

a rapid, accurate,and economical method for measuring mass moments

of inertia. A torsional system, consisting of an extruded steel rod, an

electronic-counter timer, and a scale for measuring decay rates was

employed. Various precision test objects were attached to this system

and measured in controlled and uncontrolled environments.

These tests provided a practical m'eans of utilizing amplitude decay

rates to determine the average efficiency at which an oscillating system

functions. No attempt is made in this report to define or evaluate the

specific conditions causing amplitude decay.

Investigation revealed that decay rate or damping is independent

of mass and inertia for a specific configuration, but is directly related

to some combination of environment and system configuration. This

relationship is determined and applied to inertia measuring methods.

INTRODUCTION

In the design of space vehicles, the prediction of vehicle response

to applied forces must be sufficiently accurate to assure mission

accomplishment. These predicted responses will have validity only if

the vehicle's resistance, which depends directly and only on its mass,

balance and inertia, is accurately known. This knowledge may be

gained analytically, from documentation, on simple regularly shaped



configurations. However, incomplete documentation, irregularity of

shape and complexity of design rule out this approach in most cases.

Hence, in order to reach the desired level of accuracy, the mass

characteristics must be measured.

Generalized investigations were conducted on spring, compound,

bifilar and torsional pendulum systems. Preliminary results indicated

the torsional system to be the most reliable of those tested. The

selection of this system may be, in part, attributed to the following:

undesirable motions are easier to control; bearings are eliminated;

tare weight is reduced; mathematical considerations are simplified;

loading, and operation in general, is more easily performed.

It became evident early in the tests that the torsion rod constant

varied inversely with the temperature. In a similar manner the time

per cycle varied with temperature, surface area and the configuration

being measured. Investigations were then directed toward a method

based on the mathematical formula I = Ct z, (I = inertia, C =

system constant, and t = time for one cycle) to account for these

varying influences. A series of tests were run using test pieces having

different mass moments of inertia, and curves of amplitudes versus

cycles were plotted. These curves proved decay or damping to be

independent of inertia. In addition, these curves provided an accurate

means of determining the system efficiency.

The efficiency factor was incorporated into the basic equation

giving the new formula, I = ECt 2. When the correction factor is

included, the measured inertias show very close agreement to calcu-

lated values of the standard inertia objects.

APPARATUS

Figure 1 illustrates an overall picture of the test facility used.

A 1/4-inch-(0. Z5-inch-)diameter torsion rod 65 inches long (nominal)

was the basic frequency generator. This rod was fixed to an A-

frame with approximately 91/z feet of clearance. Connected to the

lcwer end of the torsion rod was a 2 X 2 X Z-inch aluminum adapter

block which enabled fastening of the test objects in the two required

planes. This was the basic "gear. "
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One test object used was a precision-manufactured flat stainless

steel plate 0.122 inch thick, 39. 484 inches long, and 36. 031 inches

wide. The weight of this plate was 49. 285 pounds.

A photocell and light source was located perpendicular to the

axis of rotation. The breaking of the light beam by a 1/16-inch diameter
aluminum wand attached to the test object energized the electronic

counter-timer.

A Beckman-Berkeley Pendulum Timer was used to count the

number of cycles and the time for a given number of cycles.

The total angle of twist that the oscillating system made during

each cycle of operation was accurately obtained by visually reading the

position of a projected "arrow" on a protractor at the instant the

rotating mass changed directions. At this instant, the system has a

maximum amount of stored energy.

The protractor used to measure angular displacement was

graduated in increments of 0. 002 radian and readings were readily

estimated to 0. 001 radian (FIG. 2).

This protractor was scaled for use on a 140-inch radius, and to

read the angle of twist of the rod directly.

An illuminated arrow point was projected onto this radian scaled

protractor by a small mirror magnetically mounted on the torsion rod

base (FIG. 3 and 4).

Temperature was recorded by a standard laboratory centrigrade
thermometer.

This test facility also included four 2.00-pound weights and four

7.97-pound weights for the purpose of adding inertia to the horizontal

flate plate as shown in Figure 5.

Two precision-machined "Dumbbells" were used to calibrate the

system and verify conclusions.

The one flatstainless steel plate was chosen as a test object

because: (1) weight, center of gravity, and mass moments of inertia

can be calculated very accurately; (2) object can be tested in such a
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FIGURE 4. MAGNETICALLY MOUNTED MIRROR
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FIGURE 5. FLAT PLATE WITH ADDITIONAL INERTIA



position as to have relatively little external damping effect; (3) by

rotating this object 90°, it can develop a very large external damping

effect.

ANALYSIS OF METHOD

Inertia quantities determine a body's acceleration response to

applied loads. If these loads produce a moment about a body axis,

body's inertia about this axis will resist this moment, so that the

relationship T = I@ exists.

the

The theoretical angular twist for a torsion rod is @ = TL/GJ.

By setting 9 = 1 radian and solving for T, we have: T = GJ/L,

which by definition is the torque stiffness of the torsion rod (i. e.,

torque required to twist the rod one radian). The symbol used for

this torsion rod constant is "k"

It is apparent that "k" cannot be accurately calculated since it

is dependent upon dimensions and material characteristics that change

with load and/or temperature. Also, the accuracy of measurement

and/or calculation of these rod characteristics are subject to

considerable doubt. Therefore, the establishment of "k" is done by

using "standard" inertia bodies whose calculated quantities are

definitely obtainable. This is accomplished by measured investigations

of the theoretical relationship: I = ktZ/4_r z

This theoretical relationship assumes that "k" remains constant,

and that environmental and operational characteristics of the system

do not affect the time "t ". If the temperature could be held constant,

and if the operational characteristics such as angular velocities, air

densities, air currents, etc., could also be held constant, then at

least a fixed quantity of "additional mass effect" would be present, and

could be accounted for analytically.

However, most facilities do not have environmental control, and

the practical solution to the problem must provide a simple means of

accounting for all influence factors existing during a varying and

partially unknown environment. This can be done by measuring the

amplitudes of twist in radians for a consecutive series of cycles and

plotting the amplitude versus cycle curve of the oscillating system.

(See FIG. 6, 7, 8, 9, and 10.) A straight line joining any two
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amplitude points on the curve provides the information necessary to

determine the average efficiency of the system as it was operated

from the larger amplitude on to the smaller amplitude, and the

intermediate point on the curve whose tangent has the same slope as

this straight line is the time instant during the operation when this

efficiency is applicable.

The next problem to the solution is determining the time of the

cycle whose midamplitude is that defined by the point of tangency of

the efficiency line on the amplitude versus cycle curve.

This is done by drawing a series of lines parallel to the tangent

line, reading the amplitudes and cycles at the two intersection points

of these lines with the decay curve, and timing a series of runs using

the starting amplitudes from these intersections and their corres-

ponding number of cycles. The effective system torsional constant

"C wlcan then be determined by solving the equation C = I]Etz; this

constant, having been determined by using standard inertia objects,

can then be used as a system constant in subsequent measurements.

A sample work sheet is shown in _ble 1.

Several sets of data and their associated calculations are presented

in Appendix A for clarification of details and operating procedures.

Appendix B includes a detailed derivation of the static 'tk" or

torque stiffness of the torsion rod, for comparison purposes.

An analytical analysis of the torsional system incorporating the

efficiency factor "E" is explained in Appendix C.

CONC LUSIONS

A series of experimental investigations were conducted to devise

a simple and accurate method for measuring mass moments of inertia.

The method presented utilizes a torsion pendulum system and a

selected group of "standard inertia bodies" The method developed

is adaptable to any mechanical inertia measuring system.
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The outlined results are indicative of the simplicity and accuracy

that can be expected from a mechanical oscillating system. These

results are summarized as follows:

I. In the theoretical analysis of mechanical oscillating systems,

ideal conditions are assumed. In actuality, damping forces exist which

alter theoretically expected results.

Z. Analysis of decay rate curves indicates that damping is inde-

pendent of inertia, but is directly influenced by environment, system

configuration and friction (external and internal).

3. The tangent segment of the decay rate curve can be used to

obtain an accurate system efficiency.

4. This system efficiency (or correction factor),when applied to

the theoretical formula,will account for the effects of all damping

forces. For the system outlined in this report, the following relation-

ships exist:

Theoretically I = ktZ/4_

Actually I = EktZ/4_ z

(Note: A similar relation exists for all mechanical oscillating

systems. )

5. Torsion rods can be proportioned to control oscillating

frequency.

6. Results indicate that good accuracy can be obtained in an

expedient manner with simple equipment.
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The following is a series of examinations produced and analyzed

by previously mentioned methods. Resulting data are noted com-

paratively with actual calculated values of these test specimens as

conclusive evidence to support this theory.

For three test runs ,the torsional system began at an amplitude

of 0.20 radians for 100, Z00, and 300 cycles. The slopes and tangent

points (FIG. ll; Note: arrows denote tangents) were used to calculate

the related efficiency factor t'E". Times and temperatures were

recorded and the mass moment of inertia determined.

Three other test runs were made in such a manner that the

efficiency remained constant. Times were recorded and "Et 2''

products compared.

Test Run

.

2.

3.

4.

5.

6.

Radians

0.20

0.20

0.20

0.20

0.15

0. i0

Cycle s

i00

200

30O

410

260

76

Timer "A"

74 i.946 32

1483. 13212

2223. 98744

3039.02179

1927. 29040

563. 39381

Timer "B"

741.95363

1483. 14957

2224.01825

3039.05071

1927. 30544

563. 39590

Temperature

in Centigrade

23.3 °

23.0 °

22.37

22.9 °

22.5 °

21.9 °

l

EFFICIENCY CALCULATIONS

E = 2NOM - 01 + ON
2NOM + 01 - ON

zoo(. 135) - .zo + .093z
El 200(. 135) + .20 - .0932 = "9921
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400(. I12) - .20 + .058

Ez = 400(. I12) + .20 - .058 = .9937

600(. 094) - .20 + .040

E3 = 600(094) + .20 - .040 = .9943

820(. 0839) - .20 + .029 9950
E4 = 820(. 0839) + .20 - .029 = "

520(. 0839) - . 15 + .0416

Es = 520(. 0839) + .15 - .0416 = .9950

152(.0839) - . 10 + .0676

E6 = 152(.0839) + . 10 - .0676 = .9949

The system constant (C) used in these calculations was calibrated

at a temperature of 22.5 °C.

Measured Mass Moment of Inertia Calculations

(Using Equation Io = ECt z)

Test Run Answer in # in. sec z

,

2.

3.

4.

5.

6.

Io = .9921(1.75217)55.04898 = 95. 6932

Io = .9937(1.75217)54.99261 = 95. 7494

Io = .9943(1.75317)54-95760 = 95. 7267

Io = .9950(1.75217)54.94189 = 95.7862

Io = .9950(1.75217)54.94782 = 95. 7965

Io = .9949(1.75217)54.95390 = 95.7975
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The actual mass moment of inertia of this "large dumbbell" as

determined by calculation from the gaged physical dimensions is

95. 772 # in. sec 2.

These results indicate that better accuracies are obtained by

using a greater number of cycles in the "test run. "

These differences may be attributed to one or more of the

following: (1) gaging accuracies on physical dimensions used in

calculations; (2) shift in tolerances of measuring equipment and "gear"

hardware; (3) inconsistency of environment during actual tests; and

(4) the plotting of the decay curve and the calculation of the efficiency

therefrom.

Variables which may be neglected as applied individually but

have an accumulative significance to very critical requirements are:

(1) mass and inertia of the wand used to break the light source in the

photoelectric counter and timing device; (2) drift of the mirror

during a test; and (3) the resisting moment of inertia of the torsion

rod.
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APPENDIX B

A calibration setup was made to determine the static "k" (torque

stiffness) of the torsion rod for comparison purposes.

The gear utilized for this examination was the "radian" pro-

tractor previously mentioned with the pointer light source and a

system of pulleys and weights. Small ball bearings were used as

pulleys to minimize friction. Two pieces of light weight nylon string

were attached tangent to the periphery of a cylindrical mass 180 °

apart and equidistant from the rotational axis of the torsion rod.
The free ends of these strings were passed through the pulleys in such

a manner that weights could be fastened to apply a torque to the rod.

Weights were added to increase the torque in O. Ol29-pound

increments. The angle of twist, temperature, and tension load on the

rod were recorded until the entire measuring range was covered. It

was noted that the "k" would vary with temperature and tension load.

A graph of "k" versus these individual variables was plotted. These

curves appeared linear over a reasonable range and were extra-

polated to determine the static torque stiffness of the torsion for 0 °

centigrade with no tension loading. These unstable conditions have

a minute effect in practical application of the system, and may be

neglected by keeping the "k" constant without any significant change

in the end result. Values calculated from these data varied from

the dynamic calibration by 0.5%, which may be attributed to the

resisting effects of the string and pulleys.
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APPENDIX C

The following is an analytical analysis of the torsional system

incorporating the efficiency factor "E. "

At the time of the rod constant "k" calibration, "k" appeared to

be all that was necessary to obtain the degree of accuracy needed to

satisfy the tolerances required for measured inertia. However,

closer examination from this series of experiments revealed that,

while the rod constant "k" was perfectly valid for a test dumbbell,

it was not necessarily valid for other configurations. Since var4ables

other than temperature are ever-present, i.e., aerodynamic forces,

surface (or skin) friction, internal rod friction, etc., it becomes

apparent that the mathematical formula Io = ktZ/4_ z must be altered

or refined in such a manner that all existing variables are accounted

for. Hence, the introduction of the efficiency factor "E."

It was noted that the additional mass effect has a direct relation-

ship with the decay amplitudes, i.e., as the proportional mass effect

is increased, the rate of decay increases. Byplotting the decay

amplitudes versus number of cycles, it is noted that at a large

amplitude of swing, the rate of decay is high. (By the same token,

the total efficiency of the system is low.) However, at a small

amplitude the curve becomes near linear, making the decay rate low

and the total efficiency high. Thus the rate of decay is inversely

related to the total efficiency of the system. It is logical to assume

that an efficiency factor "E" can be computed from that portion of the

decay rate curve used to measure the mass moment of inertia.

The analytical aspects of the torsion rod inertia measuring system

may be considered by fixing one end of a uniform rod of circular cross-

section to a rigid support, and attaching a disk of homogeneous

material with an inertia much greater than that of the rod to the lower

end. The disk is fastened so that its cylindrical centerline coincides

with the longitudinal axis of the rod.

Potential energy is then stored in the system by rotating the disk

about its cylindrical axis through an angle O. With the release of

energy, the disk starts oscillating about its equilibrium position where

e = o. Referring toFigure 12, the applied torque or twisting moment
is 'tfa. "
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[

Shaft of
L Radius b

Disk h

I

(a)

dr

eo (radians)

f

(b)

FIGURE IZ. TYPICAL TORSIONAL SYSTEM

If the torque required to rotate the disk through an angle (9 is "T, "

for a limited range of O, a linear relationship T = k8 exists. When

the elastic limit of the torsion rod is not exceeded, the torque-

stiffness constant of the rod "k" is defined as the twisting moment

required to cause an angular movement of 1 radian. The torque

compliance is defined as "k -I'';for a uniform shaft,

k = _b4G/ZL = GJ/L.

The condition to be satisfied during oscillation (after removal of

"f") is that the algebraic sum of the internal torques shall be zero.

The torque due to the resisting moment for the shaft is given by
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T = ke, and neglecting the inertia of the shaft (this was considered

in the experiment, but was found to be insignificant for practical use),

there remains the inertial torque due to the disk. For example,

referring toFigure 12b, the mass of an elemental ring is 2 phr dr.

The peripherial velocity of the ring is d(rS)dt = rde/dt, and its
moment of momentum (2_phr dr) rZ8 = (2ephr3dr)8. The time

rate of change of the moment of momentum of the ring is equal to the

inertial torque, so: dT1 = (2_phr_dr)_. For the whole disk:

TI 2 _ph'8 /o a "_= r3dr = (p_ra4h/2)'8 = 18, where: I = pTra4h/2

= MaZ/Z, is the moment of inertia of the disk.

Then, by T = kS, and T, = I8, the above condition is satisfied

if: I8 + t8 = 0, or '8 + wlZ8 = 0, where w, z = k/I. Its

complete solution is: 8 = A cos wl t + B sin wl t, and the angular

frequency about the common axis of the torsion rod and the disk is

wl = (2k/p_a4h) I/z = (b/a) z (G/ph)I/z/Ll/Z; thus the size of a torsion

rod may be mathematically selected to meet specific requirements.

The theoretical period of oscillation is t = Z_(Io/k)I/z, Io

being the mass moment of inertia of the entire body attached to the

"free" end of the torsion rod; therefore, the theoretical mass moment

of inertia of a given body or test object is: I o = kt z/4_ z, or

Io = Ct z where C is the system constant (k/4_rZ).

Actually, there are both internal and external forces that cause

successive decays to the theoretical amplitude of an oscillating

system. Some of these forces cause "coulomb" damping which

results in a constant rate of decay with respect to amplitude, but does

not affect the time per cycle. Other forces cause "viscuous"

damping which results in a varying rate of amplitude decay and a

varying rate of change of time per cycle.

The combined effort of these two groups of resisting forces can

be accounted for by a proper interpretation of the amplitude decay

curve combined with the measured time per cycle of that part of the

decay curve used.

The resulting correction required to reduce experimental results

to theoretical true values is often called "Additional Mass Effect"

and may be visualized as an increased radius of gyration.
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In order to obtain near exact results in measuring mass moments

of inertia, a correction factor to account for these damping forces

must be incorporated in the mathematical equation used. An analysis

of decay curves (radians of twist versus number of cycles) from a

series of tests provided a method of establishing such a correction

factor for any one, any consecutive group, and/or for the complete

series of energy twists generated.

The slope of a straight line joining the starting and ending points

of this curve (chord line) determines the efficiency for the series of

energy twists within the intercepts of the curve and chord. The

amplitude used in the efficiency formula is the amplitude corres-

ponding to the point of tangency that a line parallel to the chord line

makes with the curve. The "E" (efficiency factor) should be computed

cot r e spondingly:

1. The energy used during any series of energy twists =

C(O,- ON).

2. The average energy used during one energy twist

C(01 - ON )

3. The starting energy for that one cycle having the same efficiency

as the entire test run = C[OM + (0, - ON)]ZN or "input. "

C

4. The corresponding ending energy for this one cycle

[0M- (01 ZN- 0_q)] or "output."

5. For any mechanical system: efficiency = input/output;

therefore, for any mechanical oscillating system:

[ [ -(o,ZN

E = ZNOM - 01 + ON for the test run used.
ZNOM + 0, - ON

or

In the formula I o = ECt z , the "t" (average time for one cycle)

should be computed by dividing the total time (in seconds) taken in a

test run by the total number of cycles in that particular test run.
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